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Woody Allen:

“I took a speed reading course and read 

'War and Peace' in twenty minutes. …

….. It involves Russia.”
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MPC successful in industry.

Many and very diverse and  successful 

applications:

 Petrochemical, polymers, 

 Semiconductor production,

 Air traffic control

 Clinical anesthesia,

 ….

 Life Extending of Boiler-Turbine Systems via 

Model Predictive Methods, Li et al (2004)

Many MPC vendors
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MPC successful in Academia

 Many MPC sessions in  control conferences 

(2/12 at this symposium) and control journals, 

MPC workshops.

 MPC in other research areas: industrial 

electronics, chemical engineering, energy, 

transport …

 4/8 finalist papers for the IFAC journal CEP 

best paper award were MPC papers (2/3 

finally awarded were MPC papers)
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IFAC Pilot Industry Committee

Chaired  by Tariq Samad (Honeywell), 28 total: 15 industry, 12 

academia, 1 gov’t; 

Members asked to assess impact of several advanced control  

technologies:

 Q1 Responses [23 responses]

• PID control:  23 High-impact

• Model-predictive control:  18 High-impact; 2 No/Lo impact

• System identification:  14 High-impact; 2 No/Lo impact

• Process data analytics:  14 High-impact; 4 No/Lo impact

• Soft sensing:  12 High-impact; 5 No/Lo impact

• Fault detection and identification [22]:  11 High-impact; 4 No/Lo impact

• Decentralized and/or coordinated control:  11 High-impact; 7 No/Lo impact

• Intelligent control:  8 High-impact; 7 No/Lo impact

• Discrete-event systems [22]:  5 High-impact; 7 No/Lo impact

• Nonlinear control:  5 High-impact; 8 No/Lo impact

• Adaptive control:  4 High-impact; 10 No/Lo impact

• Hybrid dynamical systems:  3 High-impact; 10 No/Lo impact

• Robust control:  3 High-impact; 10 No/Lo impact

6
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Why is MPC so successful ?

 MPC is Most general way of posing the 
control problem in the time domain:
 Optimal control

 Stochastic control

 Known references

 Measurable disturbances

 Multivariable

 Dead time

 Constraints

 Uncertainties
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Real reason of success: Economics

 MPC can be used to optimize operating points  (economic 
objectives).  Optimum usually at the intersection of a set of 
constraints.

 Obtaining smaller variance and taking constraints into account 
allow to operate closer to constraints (and optimum).

 Repsol reported 2-6 months payback periods for new MPC 
applications.

P1 P2

Tmax
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Flash

Línea 2

Línea 1
Lavado

Contacto 1

Contacto 3

Contacto 2

EXHAUST GAS PIPING
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Benefits

 Yearly saving of more that 1900 MWh

 Standard deviation of the mixing chamber 

pressure reduced from 0.94 to 0.66

 Operator’s supervisory effort: percentage 

of time operating in auto  mode  raised 

from 27% to 84%.
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A little bit of history: the 

beginning

 Kalman, LQG (1960) 

 Propoi, “Use of LP methods ...” (1963)

 Richalet et al, Model Predictive Heuristic Control (MPHC) 

IDCOM (1976, 1978)  (150.000 $/year benefits because of 

increased flowrate in the fractionator application)

 Cutler & Ramaker, DMC (1979,1980)

 Cutler et al QDMC (QP+DMC) (1983) 

 Clarke et al GPC (1987)

 First book:  Bitmead et al, (1990)
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The impulse of the 90s. A renewed 

interest from Academia (stability)

 Stability was difficult to prove because of the  finite horizon and the 

presence of constraints (non linear controller, no explicit solution, …)

 A breakthrough produced in the field. As pointed out by Morari: ”the 

recent work has removed this technical and to some extent 

psychological barrier (people did not  even try) and started wide 

spread efforts to tackle extensions of this basic problem with the 

new tools”. (Rawlings & Muske, 1993)

 Many contributions to stability and robustness of MPC: Allgower, 

Campo, Chen, Jaddbabaie, Kothare, Limon, Magni, Mayne, Michalska, 

Morari, Mosca, de Nicolao, de Olivera, Scattolini, Scokaert…
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MPC now

 Linear MPC is a mature discipline. More than 30.000 industrial 
applications. 

 The number of applications seems to duplicate every 4 years.

 Some vendors have NMPC products: Adersa (PFC), Aspen Tech 
(Aspen Target), Continental Control  (MVC), DOT Products (NOVA-
NLC), Pavilon Tech. (Process Perfecter)

 Efforts to develope MPC for more difficult situations:
 Multiple and logical objectives (Morari, Floudas)

 Hybrid processes (Morari, Bemporad, Borrelli, De Schutter,  van den 
Boom …)

 Nonlinear (Alamir, Alamo, Allgower, Biegler, Bock, Bravo, Chen, De 
Nicolao, Findeisen,  Jadbadbadie, Limon, Magni, …)

 Fast MPC  (Bemporad, Löfberg, Fikar, ...)

 Challenge: Incorporate stability and robustness issues in industrial 
MPC design.
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MPC strategy

 At sampling time t  the future 
control sequence is compute  so 
that the future sequence of 
predicted output y(t+k/t) along a 
horizon N follows the future 
references as best as possible.

 The first control signal is used 
and the rest disregarded.

The process is repeated at the 
next sampling instant t+1

t t+1 t+2 t+N

Control actions

Setpoint
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tt+1t+2

t+N t     t+1    t+2   ……..      t+N

u(t)

Only the first  

control move is 

applied

Errors minimized over 

a finite horizon

Constraints 

taken into 

account

Model of 

process used 

for predicting
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t+2 t+1

t+N

t+N+1

t     t+1    t+2   ……..      t+N t+N+1

u(t)

Only the first 

control move is 

applied again 
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PID:   u(t)=u(t-1)+g0 e(t) + g1 e(t-1) + g2 e(t-2) 

MPC vs. PID
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MPC strategy

Consider a nonlinear invariant discrete time system:

x+=f(x,u),    x  Rn, u  Rm

The system is subject to hard constraints

x  X, u  U

Let u={u(0),...,u(N-1) } be a sequence of N control inputs
applied at x(0)=x,  

the predicted state at i is

x(i)=(i;x, u)=f(x(i-1), u(i-1) )
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MPC strategy

1. Optimization problem PN(x,):

u*= arg minu (i=0,...,N-1) l(x(i),u(i)) + F(x(N))  

 Operating constaints .

x(i)  X, u(i)  U,  i=0,...,N-1

 Terminal constraint (stability):  x(N)  

2. Apply the receding horizon control law: 
KN(x)=u*(0).
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Linear MPC 

 f(x,u) is an affine function (model)

 X,U, are polyhedra (constraints)

 l and F are quadratic functions (or 1-norm 

or -norm functions)


 QP or LP
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Otherwise

 If f(x,u) is not an affine function

 Or  any of X,U, are not polyhedra

 Or any of l and F are not quadratic functions

(or 1-norm or -norm functions)


 Non linear MPC (NMPC)

 Non linear (non necessarily convex) optimization 
problem much more difficult to solve.
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MPC stability and constraints

 Stability was difficult to prove because of the finite horizon

and the presence of constraints (non linear controller, no 

explicit solution, …)

 Manipulated variables  can always be kept in bound by the

controller by clipping the control action or by the actuator.

 Output constraints are  mainly due to safety reasons, and 

must be controlled in advance because output variables 

are affected by process dynamics.

 Not considering contraints properly may lead to unstability

 Gunter Stein: “Respect the unstable”
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Stability and constraints

y(t+1)=1.2 y(t)+0.2 u(t-2)   with -4 < u(t) < 4,  N=5
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MPC stability

 Infinite horizon. Keerthi and Gilbert (J. Optim.Theory Appl., 1988)  the 
objective function can be considered a Lyapunov function, providing nominal 
stability. Cannot be implemented: an infinite set of decision variables.

 Terminal state equality constraint. Clarke and Scattolini (IEE, 1991)

x(k+N)= xS  

difficult to  implement in practice.

xS

x(t)

x(t+1)
x(t+2)

x(t+N)
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MPC stability (2)

 Dual control.  Michalska and Mayne  

(1993) x(N)  

Once the state enters   the 

controller switches to a previously 

computed stable linear strategy.

Quasi-infinite horizon.  Chen and Allgower (1998). Terminal region 
and stabilizing control, but only for the computation of the terminal 
cost. The control action is determined by solving a finite horizon 
problem without switching to the linear controller even inside the 
terminal region. The term  (|| x(t+N)||P)2 added to the cost function 
and approximates the infinite- horizon one.

x(t)

x(t+1)
x(t+2)

x(t+N)


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MPC stability (3)

 Asymptotic stability theorem (Mayne 2001)

 The terminal set  is a control invariant set.

 The terminal cost F(x) is an associated Control 

Lyapunov function such that

min{u  U} {F(f(x,u))-F(x) + l(x,u) | f(x,u)} ≤0  x

 Then the closed loop system is asymptotically 

stable in XN( )

How robust is the stable MPC ?
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stable MPC is Input to State Stable

D. Limón, T. Alamo and E.F. Camacho, Input to State Stable MPC for Constrained Discrete-time Nonlinear 

Systems with Bounded Additive Uncertainties,  2012, Las Vegas.

D. Limon. T. Alamo, D.M. Raimondo, D. Muñoz de la. Peña. J.M. Bravo and E.F. Camacho, Input-to-state 

stability: a unifying framework for robust model predictive control,  Nonlinear Model Predictive Control Lecture

Notes in Control and Information Sciences Volume 384, 2009, pp 1-26

MPC is inherently robust 

under mild conditions:  

continuity of f(x,u,d,w)
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Uncertainties in MPC

 Past and present:

Model

State

 Future

Model

Process load 

References and Control objectives

31
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Robustness in MPC

 Robust stability.

 Robust constraint satisfaction.

 Robust performance.

 Robustness to failures.

32
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Robustness

Uncertain system:   x+=f(x,u,  ),    x  Rn, u  Rm   Rp

With bounded uncertainties  and subject to hard constraints   x  X, u  U

The uncertain evolution sets or reachable sets (tube): 

X(i)=(i;x, u)= {z  Rn |   , y  X(i-1), z=f(y, u(i-1), )}

and X(0)=x

t        t+1        t+2           …                  t+N

y(t)

u(t)
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Robust stability 

 The stability conditions has to be 
satisfied for all possible values of the 
uncertainties.

 The terminal set  is a robust
control invariant set. (i.e.  x,  

 u  U | f(x,u, ))

 The terminal cost F(x) is an 
associated Control Lyapunov function 
such that

min{u  U} {F(f(x,u,))-F(x) + l(x,u) | 

f(x,u,)} ≤0  x,  
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Computation of reachable sets and 
invariant sets  for robust constraint 
satisfaction or robust stability
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Computation of reachable sets and 
invariant sets  for robust constraint 
satisfaction or robust stability

• Reachable sets are difficult to compute. 

• Approximations and bounding based on:

• Ellipsoids

• Linealization

• Lipschitz continuity

• Interval Arithmetic

• Zonotopes

• DC Programming
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Illustrative example
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MPC for tracking (motivation)

• Most stability – robustness results for the origin.

• What if your setpoints change ?

Moving the invariant 

set to the new 

setpoint may not   

work in the presence 

of constraints
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Robust MPC for Tracking

Consider the following discrete time LTI system with additive bounded 

uncertainties:

Objective: Given any admissible setpoint s, design a control law such that:

y(k) tends to the neighbourhood of yt when k→

x(k) and u(k) are admissible for all k ≥ 0 and all possible realizations of 

Problem description

The system is constrained to:

Linear

Process
u xRobust MPC

for tracking



target

yt
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Robust MPC for Tracking

Lemma (Langson 2004)
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• Considering the tighter set of constraints for the nominal system

The tube: (Langson 2004 ; Bertsekas 1972)

Robust MPC for Tracking

(Mayne et al., 2005)
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MPC vs Robust MPC for tracking
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Robust MPC for Tracking

Then, for any feasible initial state i.e., x  N and any reachable target,  the 

uncertain system is steered asymptotically to the set                                       

for all possible realization of the disturbances, satisfying the constraints

Theorem: Consider that

 is such that                   is stable

 Q>0, R>0,      and P such that:

 a
t is an admissible invariant set for tracking for the nominal system 

subject to the following constraints 



K is such that (A+BK) is stable and          are not empty sets

Let                              be the feasibility region of the optimization problem

(Alvarado, Limon, Camacho, 2010)
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PSA solar plant

Located  in Taberna desert (Almeria, Spain). 

Hot oil that can be used to produce steam to produce electricity  or for 

a desalination plant

The control goal is to keep the oil’s temperature close to the reference.
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Metal: ρm CmAm∂Tm/ ∂t= ηo I G – G Hl(Tm-Ta) – LHt(Tm-Tf) 

Fluid: ρf CfAf∂Tf/ ∂t + ρf Cf q ∂Tm/ ∂x = LHt(Tm-Tf) 

Process model 

Simulink model can be downloaded from:

E.F. Camacho,  et al. Control of Solar Energy Systems, Springer, 2014

http://www.esi2.us.es/~eduardo/libro-s/libro.html

46
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Solar field

Parabolic trough

Outlet temp.
Oil flow

Solar

radiation

Air

Temp.

Inlet oil

Temp.
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PSA trough solar plant
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PSA trough solar plant

Identification:
To determine the set W the output of the model is compared with the real output 

for a big set of data.
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Plant controlled by robust MPC for tracking

Controller parameters:

ACUREXFFRMPCT FFref flow
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UKF MPC 

Control Predictivo de Sistemas de Energ´ıa Solar Distribuidos 80 / 81

Conclusiones y trabajos futuros

Lista de Publicaciones

1 A.J.Gallego, E.F. Camacho  (2012,2013)

E.F. Camacho                 Robust MPC design, Future and Practical Applications           Rocond'2015   

UKF NMPC
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PSA Acurex 
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Spain (650 MWe)
• Solucar (3x50MWe)

• Helioenergy (2x50MWe)

• Solacor (2x50MWe)

• Helios (2x50MWe)

• Solaben (4x50MWe)

USA (560 MWe)
• Solana (280 MWe)

• Mojave (2x140 MWe)

South Africa (100 MWe)
• Kaxu (100 MWe)

Arabs Emirates (100 

MWe)
• Sham1 (100 MWe)

Argelia (20 MW)
• Hassi R'Mel (co-generation)

Abengoa trough plants
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Solucar (3x50MWe)
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Solucar (3x50MWe)
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Outline

1. Model Predictive Control

2. Stability and robustness for MPC

3. Min max MPC

4. Fault tolerant MPC

5. Conclusions
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Why Min-Max Model Predictive Control ?
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Eduardo F. 
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Issues  
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Why Min-Max Model Predictive Control ?
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In spite of advantages,  the number
of reported applications is very low

¿?

Computational

burden

Berenguel et al. 1997
Kim et al. 1998
Álvarez et al. 2003
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Open loop vs close loop 

prediction

MPC with open-loop prediction:  The sequence of control 
actions is computed with the information available at time t.
• 1987 (Campo and Morari). 
• Min-max over real numbers
• Conservatism.
• Techniques available.

MPC with close-loop prediction:  The controller considers
that the value of the disturbances will be known in the future.
• 1997 (Lee and Yu) and 1998 (Scokaert et al)
• Min-max over control laws.
• Less conservative
• Greater computational burden (not any single reported application to 

a real process).
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Robust Model Predictive Control

System model:

Bounded additive uncertainties

Two strategies to consider u(t):

 Open-loop predictions:

 Semi-feedback predictions:
Computed by
the controller
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Robust MPC

Output
predictions

Variables
Manipulated

t t+1 t+N

futurepast

u(t+k)

y(t+k)

min-max

MPC
Plant C

K

w v u
x

y

-
+

The inner loop pre-stabilizes
the nominal system
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Min-max MPC open loop (1-norm)
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Min-max MPC open loop (1-norm)

LP (with many constraints: the vertices of the uncertainty polytope)
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Multiparametric min-max MPC

N=3

N=5
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Reduction of computational burden 

Set of active 
vertices
is very small
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Feedback PT-326
•Scaled laboratory process
•2nd order system
•Fast dynamics
•Ts = 0.4 s.

(Explicit solution)
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Comparisons

MPC

MMMPC

MMMPC
with linear 
feedback

Different positions of the inlet 
throttle from 20o to 100o
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Outline

1. Model Predictive Control

2. Stability and robustness for MPC

3. Min max MPC

4. Fault tolerant MPC

5. Conclusions
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Modelling bounded uncertainties: 

Difference inclussion

•Model to confine the sucessor state into a set

•The function f(.,.,.) and the set W provide a 

difference inclussion for the system if for any pair

(x,u), there is a w in W such that
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Difference Inclussions 

 Example:

 Suppose that we obtain a nominal linear model around an 

operation point :

 Suppose that we are able to bound the discrepancy between the 

nominal model and the actual behaviour of the system:

 Thus we obtain the following difference inclussion: 

 This can be rewritten using the Minkowski sum notation:

ρ
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Consistent state set
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Determination of the compatible output set
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A simplified case



E.F. Camacho                 Robust MPC design, Future and Practical Applications           Rocond'2015   
75

Non Detectability 

Consistent state set for model 1

Consistent state set for model 2
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Non detectable faults: 

Multimodel MPC

Suppose a series of M model compatible with the last set 

of measurements.

xj(t+1)=Aj (t) xj (t) + Bj u(t) + ej(t)

y(t) = Cj xj(t) + vj(t)

When a control sequence U is applied, the prediction 

equation for each active model  (i.e. j=1,2, …M)

Yj= Fj xj(t) + Guj U + Gwj Wj

Each model is constrained (incuding stability and/or 

robustness constraints) by

Rj U ≤ bj + dj xj(t) + fj Wj
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Multimodel MPC

y

y1

u

y2

y3
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Multimodel MPC

min      J*(U, x1 (t), x2 (t), … xM (t))

s.t.

Rj U ≤ bj + dj xj(t) + fj Wj              j = 1, … , M

J*=     max   J(U, x1 (t), x2 (t), … xM (t), W1 , W2 , … WM )

J*=     E[J(U, x1 (t), x2 (t), … xM (t), W1 , W2 , … WM )]

QP problem !!!

U

W1 , W2 , … WM 



E.F. Camacho                 Robust MPC design, Future and Practical Applications           Rocond'2015   
79

Hypothesis on future faults

 Example: actuator jamming

Define:    Uk=[u(t),u(t+1),…u(t+k-1),0, …0]

min      J*(U, x1 (t), x2 (t), … xM (t))
U

s.t.       Rj Uk ≤ bj + dj xj(t) + fj Wj              j = 1, … , M, k= 1,…,N
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Hypothesis on future faults

u(k)

u(k+3)
u(k+2)

u(k+1)

u(k)
u(k)

u(k)

u(k+1)

u(k+1)

u(k+2)

Terminal set 
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Hypothesis on future faults

Robust MPC scenario

u(k)

u(k+3)
u(k+2)

u(k+1)

u(k)
u(k)

u(k)

u(k+1)

u(k+1)

u(k+2)

Robust terminal set 

E.F. Camacho                 Robust MPC design, Future and Practical Applications           Rocond'2015   
82

Conclusions

1. Nominal stable MPC shown to be input to state stable

2. Although there are robust (or stable) MPC design 

techniques developed in the academia, these are not 

used in industry.

3. Number of difficulties: modelling uncertainties, 

determining invariant regions, computing reach sets, 

solving optimization problem… 

4. Efforts needed to simplify robust design techniques

 Simpler models ? >> bigger uncertainties bound. 

 Heuristics.

 Can stability be guarantied  100% ? 

 Probabilistic approaches ? 
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