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Woody Allen:

.,
“| took a speed reading course and read
'War and Peace' in twenty minutes. ...

..... Iltinvolves Russia.”
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lﬁg MPC successful in industry.

Many and very diverse and successful
applications:
m Petrochemical, polymers,
= Semiconductor production,
m Air traffic control
m Clinical anesthesia,

» Life Extending of Boiler-Turbine Systems via
Model Predictive Methods, Li et al (2004)

Many MPC vendors
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MPC successful in Academia

m Many MPC sessions in control conferences

(2/12 at this symposium) and control journals,
MPC workshops.

m MPC in other research areas: industrial
electronics, chemical engineering, energy,
transport ...

m 4/8 finalist papers for the IFAC journal CEP
best paper award were MPC papers (2/3
finally awarded were MPC papers)
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. IFAC Pilot Industry Committee

% Chaired by Tariq Samad (Honeywell), 28 total: 15 industry, 12
- ~academia, 1 gov't;
Members asked to assess impact of several advanced control
technologies:
Q1 Responses [23 responses]
PID control: 23 High-impact
Model-predictive control: 18 High-impact; 2 No/Lo impact
System identification: 14 High-impact; 2 No/Lo impact
Process data analytics: 14 High-impact; 4 No/Lo impact
Soft sensing: 12 High-impact; 5 No/Lo impact
Fault detection and identification [22]: 11 High-impact; 4 No/Lo impact
Decentralized and/or coordinated control: 11 High-impact; 7 No/Lo impact
Intelligent control: 8 High-impact; 7 No/Lo impact
Discrete-event systems [22]: 5 High-impact; 7 No/Lo impact
Nonlinear control: 5 High-impact; 8 No/Lo impact
Adaptive control: 4 High-impact; 10 No/Lo impact
Hybrid dynamical systems: 3 High-impact; 10 No/Lo impact

Robust control: 3 High-impact; 10 No/Lo impact
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Why is MPC so successful ?

MPC is Most general way of posing the
control problem in the time domain:

= Optimal control

m Stochastic control

= Known references

m Measurable disturbances

= Multivariable

m Dead time

» Constraints

= Uncertainties

E.F. Camacho
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Tmax

Real reason of success: Economics

MPC can be used to optimize operating points (economic
objectives). Optimum usually at the intersection of a set of
constraints.

Obtaining smaller variance and taking constraints into account
allow to operate closer to constraints (and optimum).

Repsol reported 2-6 months payback periods for new MPC
applications.

E.F. Camacho
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E.F. Camacho

Electrical consumption of blowers

Fig. 14. Electrical consumption reduction.
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Benefits

m Yearly saving of more that 1900 MWh

m Standard deviation of the mixing chamber
pressure reduced from 0.94 to 0.66

m Operator’s supervisory effort: percentage
of time operating in auto mode raised
from 27% to 84%.
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A little bit of history: the
beginning

Kalman, LQG (1960)
Propoi, “Use of LP methods ...” (1963)

Richalet et al, Model Predictive Heuristic Control (MPHC)
IDCOM (1976, 1978) (150.000 $/year benefits because of
increased flowrate in the fractionator application)

m Cutler & Ramaker, DMC (1979,1980)
m Cutler et al QDMC (QP+DMC) (1983)
m Clarke et al GPC (1987)

m First book: Bitmead et al, (1990)
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11’%5 The impulse of the 90s. A renewed
interest from Academia (stability)

m Stability was difficult to prove because of the finite horizon and the
presence of constraints (non linear controller, no explicit solution, ...)

m A breakthrough produced in the field. As pointed out by Morari: "the
recent work has removed this technical and to some extent
psychological barrier (people did not even try) and started wide
spread efforts to tackle extensions of this basic problem with the
new tools”. (Rawlings & Muske, 1993)

m  Many contributions to stability and robustness of MPC: Allgower,
Campo, Chen, Jaddbabaie, Kothare, Limon, Magni, Mayne, Michalska,
Morari, Mosca, de Nicolao, de Olivera, Scattolini, Scokaert...
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MPC now

m Linear MPC is a mature discipline. More than 30.000 industrial
applications.

m  The number of applications seems to duplicate every 4 years.

m Some vendors have NMPC products: Adersa (PFC), Aspen Tech
(Aspen Target), Continental Control (MVC), DOT Products (NOVA-
NLC), Pavilon Tech. (Process Perfecter)

m Efforts to develope MPC for more difficult situations:

Multiple and logical objectives (Morari, Floudas)

Hybrid processes (Morari, Bemporad, Borrelli, De Schutter, van den
Boom ...)

Nonlinear (Alamir, Alamo, Allgower, Biegler, Bock, Bravo, Chen, De
Nicolao, Findeisen, Jadbadbadie, Limon, Magni, ...)

Fast MPC (Bemporad, Lofberg, Fikar, ...)

= Challenge: Incorporate stability and robustness issues in industrial
MPC design.

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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MPC strategy

s

m At sampling time t the future
control sequence is compute so

that the future sequence of
predicted output y(t+k/t) along a
horizon N follows the future
references as best as possible.

m The first control signal is used

]

Control actions

and the rest disregarded. L ‘
, t t+l t+2 t+N
mThe process is repeated at the
next sampling instant t+1
E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 17
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taken into
account

D

$’> Model of

process used
for predicting

Only the first

control move is

applied t t+1

E.F-Camacho

Robust MPC design, Future and Practical Applications

t+2 ..

t+N

Rocond'2015

18




-0 - -8 __

mmmm
H amEm
mmmn
t 1 t+2 ... N tN+1

Only the first
control move is
applied again
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3 MPC vs. PID

PID: u(t)=u(t-1)+g,e(t) + g, e(t-1) + g, e(t-2)

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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MPC strategy

L.
Consider a nonlinear invariant discrete time system:

x*=f(x,u), X e R",u e R

The system is subject to hard constraints
XxXeX, ueU

Let u={u(0),...,u(N-1) } be a sequence of N control inputs
applied at x(0)=x,

the predicted state at i is

x()=(i;x, w=f(x(i-1), ufi-1))

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 21

MPC strategy

1. Optimization problem Py(x,£2):

Operating constaints .
x(i) € X, u(i) e U, i=0,...,N-1

Terminal constraint (stability): x(N) € £
2. Apply the receding horizon control law:
Kn()=u*(0).

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 22




u’@‘? Linear MPC
m f(X,u) is an affine function (model)
m X,U,Q2 are polyhedra (constraints)
m land F are quadratic functions (or 1-norm
or co-norm functions)

U

m QP or LP

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 23

]jzg“ Otherwise

m If f(x,u) is not an affine function
m Or any of X,U,£ are not polyhedra

m Or any of I and F are not quadratic functions
(or 1-norm or co-norm functions)

U

m Non linear MPC (NMPC)

m Non linear (non necessarily convex) optimization
problem much more difficult to solve.

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 24




lﬁ MPC stability and constraints

Stability was difficult to prove because of the finite horizon
and the presence of constraints (non linear controller, no

explicit solution, ...)

m Manipulated variables can always be kept in bound by the

controller by clipping the control action or by the actuator.

m Output constraints are mainly due to safety reasons, and
must be controlled in advance because output variables

are affected by process dynamics.

m Not considering contraints properly may lead to unstability

Gunter Stein: “Respect the unstable”

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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Stability and constraints

y(t+1)=1.2 y(1)+0.2 u(t-2) with -4 <u(t) <4, N=5

' L L L L L L L L
o 20 40 60 80 100 120 140 160 180
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MPC stability

Us=

m Infinite horizon. Keerthi and Gilbert (J. Optim.Theory Appl., 1988) the
objective function can be considered a Lyapunov function, providing nominal
stability. Cannot be implemented: an infinite set of decision variables.

m  Terminal state equality constraint. Clarke and Scattolini (IEE, 1991)

x(k+N)= xs

difficult to implement in practice.

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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MPC stability (2)

e

m Dual control. Michalska and Mayne
(1993) x(N) € 2
Once the state enters Qthe
controller switches to a previously
computed stable linear strategy.

mQuasi-infinite horizon. Chen and Allgower (1998). Terminal region
and stabilizing control, but only for the computation of the terminal
cost. The control action is determined by solving a finite horizon
problem without switching to the linear controller even inside the
terminal region. The term (]| x(t+N)]|5)2 added to the cost function
and approximates the infinite- horizon one.

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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ﬁg MPC stability (3)

m Asymptotic stability theorem (Mayne 2001)
m The terminal set £2is a control invariant set.

m The terminal cost F(x) is an associated Control
Lyapunov function such that

ming, . g, {Ffcw)-Flx) + lxu) | flx,uen) <O V xen
m Then the closed loop system is asymptotically
stable in X ()

How robust is the stable MPC ?

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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stable MPC is Input to State Stable

-Uv‘- B Theorem:

At bt

MPC is inherently robust
under mild conditions:
continuity of f(x,u,d,w)

B Corollary: Local ISS
Uniform continuity can be relaxed to continuity at = = 0O,

u=0,d=0and w=0.

D. Limén, T. Alamo and E.F. Camacho, Input to State Stable MPC for Constrained Discrete-time Nonlinear
Systems with Bounded Additive Uncertainties, 2012, Las Vegas.

D. Limon. T. Alamo, D.M. Raimondo, D. Mufioz de la. Pefia. J.M. Bravo and E.F. Camacho, Input-to-state

stability: a unifying framework for robust model predictive control, Nonlinear Model Predictive Control Lecture
Notes in Control and Information Sciences Volume 384, 2009, pp 1-26
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li’g‘ Uncertainties in MPC

m Past and present:
Model
State

m Future
Model
Process load

References and Control objectives

E.F. Camacho Robust MPC design, Future and Practical Applications
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m Robust stability.

m Robust constraint satisfaction.

m Robust performance.

m Robustness to failures.

MMMPC with linear feedback

E.F. Camacho Robust MPC design, Future and Practical Applications
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Robustnhess

2}5,-
Uncertain system: x*=f(x,u, ), X e R", u e R™ § eRP

With bounded uncertainties #e® and subject to hard constraints x e X,u e U

The uncertain evolution sets or reachable sets (tube):
X(@)=I(;x, u)={z e R"| 706,y € X(i-1), z=f(y, ufi-1), )}

and X(0)=x
—— =
yit == =
5 ——
t t+1 t+2 t+N
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Robust stability

m The stability conditions has to be
satisfied for all possible values of the
uncertainties.

m The terminal set 2is a robust
control invariant set. (i.e. vxeq, v 6o
Fu eU | flxu, )e)

m The terminal cost F{x)is an
associated Control Lyapunov function
such that

min{u ‘U {F(f(x,u,0))-F(x) + l(x,u) |
fleu,0)e} <0 Vxe, V 0c®

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015 34




e Computation of reachable sets and
’zg‘ invariant sets for robust constraint
u; satisfaction or robust stability

B A sequence of sets {Xp, X1, -+, Xy} is a Fren(X1)
Xo
Sequence of reachable sets (or tube) TEsSEE
441 ‘\\\‘\,\
for a given sequence of control inputs v, Xq ‘\\;\j'/
if /\
. e X
f’iTT?(X’iav(l)v D,Wn) g Xi-H. R2 2

Where fﬂ'Ti'(:Ca U, d-: w?]) é f’ﬂ'(m’ v, da U/’rﬂfrr(-f\':, U))

——e=E=0 F1 Ra
If Ro C Xo, then R; C X Xo X?\\”\ﬁ‘itf",u,)
MAN| ?3
B Robust feasibility is ensured if X2 \:’\\\7"
'\_/'
‘ \'i X (‘(.j) :_: Z.T /\'3 Frl(X2)
E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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Computation of reachable sets and
invariant sets for robust constraint
satisfaction or robust stability

* Reachable sets are difficult to compute.
* Approximations and bounding based on:

 Ellipsoids
 Linealization

* Lipschitz continuity
* Interval Arithmetic
» Zonotopes

+ DC Programming

36  E.F.Camacho Robust MPC design, Future and Practical Applications Rocond'2015




53 lllustrative example
us P

B Illustrative example (Alamo’'08):

2t = —072540.123 4 0.1z125 + 0.1
1‘5" = z1+ a0 — O.lm% + 0.2z129

1.2 0
0.1 m\
11 g " ' .
RPEAL D 02 //'47'.#:'; N
. ; 'ty;‘ /z }.}ﬁ.o. 7
i 0.3 o° 2 ' 0
RN "t':é':"' 2
™ ff"‘. [y :' 0.4 ‘l. .#.
.o s C
09 05 ~
o -0.6 . :
42 11 1 09 08 Interval arithmetics
08 075 07 085 08 7onotope inclusion
One step set DC-programming
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Us lllustrative example

m Sequence of reachable sets

15 I 1
X6 Zonotope inclusion
. T N DC-programming
‘ ® x
ox@®T §
05 7 i b
- —J 3

0 XB(Q\ Xlt}@X4
IS

A
’

05 N ~—/
Q)% X3
- X
X2
155 -1 0.5 0 0.5 1 15
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li’%f MPC for tracking (motivation)
* Most stability — robustness results for the origin.

« What if your setpoints change ?

Moving the invariant
set to the new
setpoint may not
work in the presence
of constraints

’
>/
b
=

g3
. SR ARG I
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Robust MPC for Tracking

Problem description
Consider the following discrete time LTI system with additive bounded
uncertainties: %m

xt = Az + Bu + w ‘l target

Robust MPC u Linear X
The system is constrained to: Ye for tracking Process
reX CR" Zﬁ

uweld C R™
weWCR"?

Objective: Given any admissible setpoint s, design a control law such that:
»y(k) tends to the neighbourhood of y, when k—o
»x(k) and u(k) are admissible for all k 2 0 and all possible realizations of ®

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015




53 Robust MPC for Trackin
Us °

Lemma (Langson 2004)

Nominal model: #+ = Az + Bu
Plant model: T = Az +Butw

et = (A+ BK) etw
Control law: u = Kx—-I)+u Hurwitz
Control error: e = x—1=I

Robust Positively invariant (RPI) set ¢y

Consider that (A 4 BK) is Hurwitz.
If ¢ € df, then et € gy for all w e W

TETD P = aT €T D Py

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

5%- Robust MPC for Tracking

0

The tube: (Langson 2004 ; Bertsekas 1972)

Recursively: s
If 2(0) € Z(0) @ g, then z(i) € F() Box Vi >0 (25 T ®

(Mayne et al., 2005)
« Considering the tighter set of constraints for the nominal system
X = Xodx
U = Us Koy
Applying u(i) = K(x(i) — z(i)) + u(s)
z(0) € x(0)® (—¢x)

z(i) € X
() e U, i>0

_ u(i) € U
@) e X, i>0

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015




11%@‘ MPC vs Robust MPC for tracking

N—-1

min 3 (@) = Zlg + (@ = @slF) + e (N) = 26llE + 117 - vl 7
) 1=0

st. w(y) el, z(j) € X, j=0,---,N-1

(z(N),8) € Q% (Zs,us) = Myl

Ys = Czs + Dus

N—-1
min Y (I1FG) - @3 + 13(0) — @slF) + 1F(N) — Zslp + 117 — wellF

u,é?,w i=0

TEx® (—dK)

u(j) e, z(j) € X (Fs,7s) = Myh

(Z(N),0) €2f. j=0,---,N -1 §s = CZs+ Diis
E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

uﬁég- Robust MPC for Tracking

Theorem: Consider that

» K issuchthat (4 4+ BEK)is stable

> Q>0, R>0, K and P such that: P — (A + BR)TP(A+ BR) = Q + KTRK
» Q2 is an admissible invariant set for tracking for the nominal system

subject to the following constraints z(i) € X and u(i) € i

»T=>0

»K is such that (A+BK) is stable and &, i are not empty sets

Let xy = Xy @ ¢x be the feasibility region of the optimization problem

Then, for any feasible initial state i.e., X € &, and any reachable target, the
uncertain system is steered asymptotically to the set y; @ (C' + DK) ¢
for all possible realization of the disturbances, satisfying the constraints

(Alvarado, Limon, Camacho, 2010)

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015




, PSA solar plant
U P

Located in Taberna desert (Almeria, Spain).
Hot oil that can be used to produce steam to produce electricity or for
a desalination plant

] ACUREX
FIELD

ot

The control goal is to keep the oil's temperature close to the reference.

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

Process model
us

Metal: p,, C,\A,dT,/ 3t=n, | G — G H(T,,-T.) — LH(T,-Ty)
Fluid: p; C;/A0T/ ot + p; C; q oT,/ ox = LH(T,-T;)

) uﬁ'ﬁj"huu%\uum'm“m

e e e

FITTECETT 11T 111 TRIfTirTTd
\ \ R / /

Simulink model can be downloaded from:

E.F. Camacho, et al. Control of Solar Energy Systems, Springer, 2014

http://lwww.esi2.us.es/~eduardo/libro-s/libro.html

46
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g
uﬁ Solar field

Inlet oil Air
Temp.

Solar
Temp. radiation

Qil flow _ Outlet temp.
——— Parabolic trough
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" PSA trough solar plant
U’ﬁ‘ g P

Identification: _ - o acUREX e |

y = x="THu

£,=8.6856782-00L, B,=1.2805016-001, C,=1, D,=0

u = FF.r

The first order model e

zT = 0.8656x + 0.1251u 4+ w

temperatures (°C)

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015




g PSA trough solar plant
Us

Identification:
To determine the set W the output of the model is compared with the real output

for a big set of data.

W={we R': |w|x < 5}| L e

The constraints sets are:

g 1%

10 142 14 146 148 15 152 154 156 158 1

X ={rec R':0<z<300} m
U={ue R!':100 < u < 350}

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

]ﬁg‘ Plant controlled by robust MPC for tracking

Controller parameters:

MPC#2

Qs=10, Ry=1, K=-181804 | | _ - - _

dx ={e€ R": |¢| < 13.7275} ——cf et o F e acurex
@ =1000, R=1, K = —6.40848 I %H

S=1{sec RP:(121.62 < s < 258.89)} T

U= {iecR™":(124.96 < @ < 325.04)}
Xp={xe R":(0<z<300)}

26 28 13
Pyrometer sensor efror

I
14 116 18 12 126 128 13

12 22 24
E.F. Camacho Robust MPC design, Future and Practical ApplicatiBi& Rocond'2015




UKF MPC

Tin

T

SOLAR PARABOLIC

Tout

TROUGH

UKF

Feedforward MPC & Metal/fluid

temperature profiles
estimation

Controller optimizer

Tref

A.J.Gallego, E.F. Camacho (2012,2013)
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UKF NMPC

-

260 = 260 "o

R | I

out 260 ' i

520 T, +4FC 5 Lo
< < i

L 240f-----, o 240| |
%zw H T
i g™ g
E E 0
& o) 2 —mmn T AC

210
122 124 126 128 13 132 124 ! 108 11 112 114 116 118 12 122 124 128
Time (local hour) Time (local hour)

- I
a0 _ E o H
H g 3 3
2 3 5 60 65
: H § 54
H 400 5 3 400 45
£ £ ) 3

2
0 1
122 124 126 128 13 132 134 136 138 W 108 11 112 114 116 18 12 122 124 126
Time flocal hour) Time (local hour)
(e) Test realizado el 13/02/2013 (f) Test realizado el 14/02/2013
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u%@ PSA Acurex

Tin — Tt
o Tref — T
Em —Tout 7 m — T
i ‘ 5 i Lvt{ Vw“—-—-—-—-ﬁ‘v

i 15 12 125 13 135 " oW oMmoMs o1 ’IOW [ W Wi B
time{local haur) timefocal baj

—— leflect 20
et a2y
3

] 14 12 124 & s M s A s 12 BRSO D B W ME B

timeflocal haur) timaflocal hourl
(c) Dia claro con nubosidad al final del dia (d) Dia con perturbaciones en la radiacion
E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

Spain (650 MWe)

* Solucar (3x50MWe)

* Helioenergy (2x50MWe)
» Solacor (2x50MWe)

* Helios (2x50MWe)

» Solaben (4x50MWe)

USA (560 MWe)

* Solana (280 MWe)
« Mojave (2x140 MWe\
South Africa (100 MWe)

+ Kaxu (100 MWe)

Arabs Emirates (100
MWe)

* Shaml (100 MWe)
Argelia (20 MW)

» Hassi R'Mel (co-generation)

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015
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Solucar (3x50MWe)
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Solucar (3x50MWe)
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1?@5 Outline

1. Model Predictive Control

2. Stability and robustness for MPC
3. Min max MPC

4. Fault tolerant MPC

5. Conclusions
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Why Min-Max Model Predictive Control ?

1
G+DG+p)

G(s) = Better performance against

uncertainties =

p € [-0.4,1]

0.4
08y 2 ) 6 8 10
segundos segundos EduardofiF.
Camacno
MPC:
Valladolid'2012 Stability and
E.F. Camacho Robust MPC design, Future and Préctical Applications Rocond'2015 Robustness

Issues




linfg. Why Min-Max Model Predictive Control ?

In spite of advantages, the number Berenguel et al. 1997

of reported applications is very low Kim et al. 1998
Alvarez et al. 2003

10°
; ?
¢ -
10°
S
Q
K
H 10
Computational g
Q@
burden =
10° b
4
10" r r
4 5 6 7
horizonte de prediccion
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Open loop vs close loop
prediction

MPC with open-loop prediction: The sequence of control

actions is computed with the information available at time t.

« 1987 (Campo and Morari).

* Min-max over real nhumbers

» Conservatism.

« Techniques available.

MPC with close-loop prediction: The controller considers

that the value of the disturbances will be known in the future.

* 1997 (Lee and Yu) and 1998 (Scokaert et al)

* Min-max over control laws.

* Less conservative

» Greater computational burden (not any single reported application to
a real process).
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Robust Model Predictive Control

11@g System model:

z(t + 1) = Az(t) + Bu(t) + DO(t + 1) I

y(t) = Cx(t)

0| < |

Bounded additive uncertainties

Two strategies to consider u(t):

0 Open-loop predictions: w(t),u(t+ 1), u(t+ 2),....
O Semi-feedback predictions: \___\Computed by
u(t) = —Kz(t) —H\'U(t) ’\’/ the controller

2(t+ 1) = Agpz(t) + Bu(t) + DO(t + 1),
A(r"',"_ = A - BK

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015

Robust MPC

> min-max
MPC

The inner loop pre-stabilizes
the nominal system

past future \\
D e
> y(t+k) ~ Output
] ns
Manipulated
11 Var?ables u(t+k)
t t+1 t+N

E.F. Camacho Robust MPC design, Future and Practical Applications Rocond'2015




%fg‘ Min-max MPC open loop (1-norm)

Nu m

J(u,0) = Z Z lyi(t+3 | t,0)—w;(t+5)|+X Z Z | Aui(t4j—1)|
j=N7i=1 j=li=1
(1)
If a series of p; > 0 and 3; > 0 such that for all
0e®,
—pi < (Yt + ) —wi(t+ 7)) <y
G < Au(t+57—-1) <3
0 < SN i+ AN i <
then ~ is an upper bound of
Ny m

pr(u) = max Z >G5, ) —wi DA D D |Au(t45—-1)]

€€ j=1li=1 j=1li=1
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5%. Min-max MPC open loop (1-norm)

min -y
v, 14,58,
subject to
w > GondGl+i+w
p > —Gyu— Gy —f+w "
vV > Guu+ G+t WRES
P —Gail— Gyl — ¢ 1
8 > u
B8 > -—-u
u = [
—u > i
U >T u+1u(t—-1)
-U > —-Tu—1u(t-—-1)
v > 1tu+4+ 218

LP (with many constraints: the vertices of the uncertainty polytope)
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U

Multiparametric min-max MPC

N=3

N=5

E.F. Camacho

Robust MPC design, Future and Practical Applications Rocond'2015

Set of active
vertices
is very small

5 6 8 10

32 64 256 1024

E.F. Camacho

10 12 14 16 |
71 97 147 201
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uﬁ*g Feedback PT-326

eScaled laboratory process
e2nd order system

eFast dynamics
eIs =0.4s.

(Explicit solution)

—_——
Heal Stored N —* Heat Out
[leal In
—_—»
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Us =

MPC

Different positions of the inlet
throttle from 20° to 100°

MMMPC with linear feedback

MMMPC
with linear
feedback
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E.F. Camacho

Outline

Model Predictive Control
Stability and robustness for MPC
Min max MPC

Fault tolerant MPC

Conclusions
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Modelling bounded uncertainties:
Difference inclussion

*Model to confine the sucessor state into a set

*The function f(.,.,.) and the set W provide a

difference inclussion for the system if for any pair

(x,u), there isaw in W such that

et e { flz,u,w) : weW } = f(z,u, W)

E.F. Camacho

@f(w, w, W)

€Zr
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Lfg Difference Inclussions

m Example:
Suppose that we obtain a nominal linear model around an
operation point: -t ~ Az -+ Bu
Suppose that we are able to bound the discrepancy between the
nominal model and the actual behaviour of the system:

lz* — Az — Bu|| <
Thus we obtain the following difference inclussion:
et e{ Az + Bu+w : |lw||<p}
This can be rewritten using the Minkowski sum notation:

rt € Ar® Bud® W, where W ={w : ||lw||<p}
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]ﬁg Consistent state set

e The function g(-,-,-) and the set V provide a inclusion
of the output of the system if

ye{glx,u,v) : veV } =g(z,u,V)

e Given u; and the measurement y;, the consistent state
set I(y;,u;) is defined as the set

MNy,w)={z : yeglz,uV)}

e In a faultless situation, the state at sample time k is
contained into I (yg, ug).
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u% . Determination of the compatible output set

%] SYSTEM o l

S

state prediction set X,

then FAULT

I: Computation of the exact IXIC If yp & g( Xy, ug, V) Fault alarm

e However, from a practical point of view, this scheme
is not implementable because in most situations it is
very difficult to obtain the exact uncertain sets.
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ué@‘ A simplified case

Faultless u xt € Ar®dBueW Y
description y € Cex®DudV -

e There is not a detectable Fault if and only if there
exists sequences

o, .., xp, wg W, .., wp_1eWandvi eV, .., v, eV
Lf‘o S XO
such that Tiy1 = A, +Buj+w;, 1 =0,...,k—1
y, = Czrj+Du;+7v;,, 1=0,...,k

e If W and V are convex sets, this feasibility problem can be
solved in an affordable time provided k is not too large.
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»

3

F(Z2,up, ws) F (s, us)

2
I (yz2, u2)
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Non detectable faults:
Multimodel MPC

e

Suppose a series of M model compatible with the last set
of measurements.

X;(t+1)=A; (1) %; (1) + B; u(t) + ¢;(t)
y(t) = C; x;(t) + (1)

When a control sequence U is applied, the prediction
equation for each active model (i.e.j=1,2, ...M)

YJ-: FJ- xj(t) + Guj U+ ij WJ-

Each model is constrained (incuding stability and/or
robustness constraints) by

R,U < b +dix(t) + f; W,
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E.F. Camacho
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Multimodel MPC

min  J°(U, X, (£), X, (@), ... x\ (1)

U

s.t.

RUS<bH+dx0+{W,  j=1I..,M

J'=

J=

E.F. Camacho

max J(U, X, (t), X, (@), ... xpy (), W, Wy, ... W)
Wy, Wy, .. Wy

E[I(U, X, (1), X, @), ... xpy (1), W, W,, ... Wy)]
QP problem !!!
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Hypothesis on future faults

m Example: actuator jamming

Define:  u,=[u(t),u(t+1),...u(t+k-1),0, ...0]

min  J°(U, X (1), X5 (@), ... x (1))
U

s.t. Rj Ukal'l'd] XJ(t)+fJ WJ j=1, ...,]‘4, k=1,...,N
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Hypothesis on future faults

uk)

Terminal set Q2
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Hypothesis on future faults
Robust MPC scenario

Robust terminal set £2
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Conclusions

Nominal stable MPC shown to be input to state stable

Although there are robust (or stable) MPC design
techniques developed in the academia, these are not
used in industry.

3. Number of difficulties: modelling uncertainties,
determining invariant regions, computing reach sets,
solving optimization problem...

4. Efforts needed to simplify robust design techniques

Simpler models ? >> bigger uncertainties bound.
Heuristics.

Can stability be guarantied 100% ?
Probabilistic approaches ?
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