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Automatic control, Robotics and Mechatronics

Modeling and control of solar plants
Modeling, control and robotics in agriculture

Energy efficiency and comfort control in
buildings

Modeling and control of photobioreactors
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energy sectors

Education in Engineering
Autonomous vehicles and robots
Design of robots

Vehicle dynamics

Vibration analysis
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Probability and estimation bases



Probability Density Function (PDF) examples

Model of a PT-100 temperature probe Wheeled robot motion model

y: output [V] s (D

X: actual temperature [K] il

n: random additive noise I ﬁ
y:f(X)+n 15} 0

n~ N(O,GZ)




PDFs of several variables: concepts

p(x)
p(Vv)

* Marginal pdfs:

e Joint pdf: p(x,V)

- Conditional pdf:  P(XIV=V,) R Y

\?‘é‘lbéity

e

Ve \ “'\‘
(v).-
R e R
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PDFs of several variables: concepts

lf

Moment form:
X ~ N(p, %)

fal)
(marginal) - fl)
(marginal)

.I:.!li 1;3':::'

p(X) = constant -exp(—%Hx - quj

f.!ﬁ I.E‘I::'Kﬁb::l
(conditional)

Matos, Jose. (2008). UNCERTAINTY TREATMENT IN CIVIL ENGINEERING NUMERICAL MODELS.
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Relationship between joint and conditional

Joint Marginal

It can be verified that: p(bla)= pp(ae;b)\:' o Ep(a,b)i=ip(b|a)ﬁp(a)

.........................................

Conditional
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PDF factorization

Given a joint pdf: p(a,b,c,d,e)
To factor it: splitting it into a product of smaller pdfs, e.g:

p(a,b,c,d,e)=p(a)p(b|c)p(d]e)

In large problems, we easily end up having 100s or 1000s of variables,
so the dimensionality of the functions matter.



PDF factorization

Tools and rules to factorize:

e Independence: p(ab)=p(a)p(b) alb

* Conditional independence: p(ab|c)=p(alc)p(blc) aLlblc

* Bayes' rule:
p(bla)

p(alb)=p(a

(alb) = p(a) 2
- Law of total probability:  P(a)=>_p(alb)p(b)
Vb
(“Marginalize b out”)




Maximum a posterior (MAP) estimation

Find the set of parameters X that maximize the likelihood of a set of
observations Z.

X" =argmax p(x|z)

X

=argmax |(z;x)

___________________

Log I|keI|hood

=> Estimation as a numerical optimization problem! x =argmin f (x)



Types of estimators for dynamic systems

* A dynamic system has a state vector x that evolves over time:

ONORORORONORO

time



Types of estimators for dynamic systems

* Filters: They just estimate the last (“current”) system state.

O
ﬂ

ESTIMATION @

REAL
SYSTEM



Types of estimators for dynamic systems

o _”n

* Fixed-lag smoother: They estimate the last “n” system states.

O
ﬂ

ESTIMATION @

REAL
SYSTEM
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Types of estimators for dynamic systems

e Batch estimator: Obtain results after processing the entire dataset.

O

REAL
SYSTEM

ESTIMATION



Graphical models. Bayes net



Why using graphs?

Algebraic manipulation Graphical models

Baves rule on z¢
oC

plz, m|z*,uf)
—_——

Posterior for £

plzg|zy, m, 27wt )p(xy, m|2' =1, uf)

plz|z,m) plzy, m|zt—1 ut)
e’
Observation model

ze Lo | ®ran, i

o0
plze|xe, m) [ plae, m|z 7wt w1 )plaea |2 wt)dre_y
oS —no

%0
- . 3 . | t =1 t - . =1 4 -
2|z m) [ plo |2 uf g )plm| 2 wf my ) plaey |25 wf)dr =
Y™ 7 Factored due to conditional independence

a0
_ : _ L _ plalb)p(b) = pla.b)

z|ay, m) pla 2t oy ) plm| 2wt o p(ey |2 uf) diry =
o —OG

These terms can be joined
ug L x_ym | @

- ul
plze|xs.m) / plxy 2t ul me ) p(a_y, m|2t Y ul)dr,
o —o0
o0

, ¥ -1 |
plz |z, m) [ plz 2wt o) plae_y, m| 2wl de AT
of —D0 S —— ——

Posterior for £ — 1

o0

plz|ze, m) [ plry|ug, 7)) plxe_y, m|:r_l_ w'Ydr,

J—a N— —
= Transition model
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Definition

The formalism of graphical models allows us to represent:
* asetof rv.s and

* their conditional independence assumptions.

It was born as a fusion of probability theory and graph theory, and

plays a central role in many machine learning techniques (Bishop,
2006).



Taxonomy

(Non-exhaustive) taxonomy of graphical models:
» Bayesian Network (BN)
* Dynamic BN (BN)
 Markov Random Field (MRF)
* Factor graphs



Purpose

Probabilistic graphical models
provide a mechanism to
compactly describe  complex
probability densities by exploiting
the structure in them.

—> Efficient factorizations of PDFs

S

O
Gy

Edges in a graph are important,
but the lack of them is what is
even more relevant.

Main application in our scope:
inference.



Bayesian Network (BN)

* A directed acyclic graphical model.
* Nodes represent variables: both, knowns and unknowns.
* Directed edges carry a semantic meaning of causality.

4 )
Allow encoding a human expert’s knowledge *

as a highly-efficient, sparse probabilistic model
\_ y,




Bayesian Network (BN)
Mathematically, a BN encodes a factorization:

p(x):H p(Xi |pi)

X={xy,...,X, }: all variables
x;: the i'th variable
p.: parents of the i"th variable



Bayesian Network (BN)

:H p(xi |pi)

p(AB,G,W,F)=2

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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F: Car was refueled

G: Car has gas

B: Car batteries are OK
W:Car starts

A: Car audio works

O

29



Dynamic Bayesian Network (DBN)

A BN over variables that have a dynamic state over time. Implicit

Markov property.
Y

D@ -~



DBN example: vehicle localization

4
,l
/- Robot poses

P(%‘l’t—l; ’Ut)
L >y

| Motion model

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Graphical models. Markov
random field



Markov Random Field (MRF)

* An undirected graphical model. May (and often will) contain loops.
* Nodes represent variables: both, knowns and unknowns.

* Edges does not carry information about causality, only about some
“relationship”.

A DBN can be converted into a MRF (not covered here).



MRF applications: image de-noising

Noisy input Restored

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Factor graphs




Factor graph (FG)

* A bi-partite graphical model. ! 1
Can contain loops.
s var o
* Two types of nodes: variables
and factors. )
* Undirected edges: only between
variables and factors. N

Unary, binary,... n-ary factors.

“Factor Graphs for Robot Perception”
Frank Dellaert, Michael Kaess, 2017



Bayes Network =2 Factor graph

* “every node in a Bayes net denotes a conditional density on the
corresponding variable and its parent nodes. Hence, the conversion is
quite simple: every Bayes net node splits in both a variable node and
a factor node in the corresponding factor graph. The factor is
connected to the variable node, as well as the variable nodes
corresponding to the parent nodes in the Bayes net. If some nodes in
the Bayes net are evidence nodes, i.e., they are given as known
variables, we omit the corresponding variable nodes: the known
variable simply becomes a fixed parameter in the corresponding
factor.” [Dellaert&Kaess, 2017]



Bayes Network =2 Factor graph

Bayes Network Factor graph

_ - ® ®

lfl'ltl Ez::

a 1 ()
) Zq i

T T !

"rfJ—'- - ff.;'-:.-a' - :FJF'-?H'
IMI-_#’"‘I M __,p-"'ll I""w.h_l_.-/'ll ° /.']-'_“_;
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Factor graph (FG) factorization

Mathematically, a FG encodes a factorization:
p(X):H fi (%)

X={xy,...,X, }: all variables
x.: all variables touching the i’th factor
f.: the i"th factor



Factor graph (FG) factorization

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Uses of FGs

* Sampling.
e Evaluation.
* Optimization:

 MAP estimator. Gradient-based (Gauss-Newton).
* How to do efficiently? (= Literature)

* Message-based optimization (not discussed here)



Error models

e Each factor model a constraint, and must include a measure of
uncertainty, confidence. The “strength” in the mass-spring model.

* Most common model;: Gaussian.
y=fd+n > e()=l10-2, =(f()-2) 2 (f(x)-2)

Problem = Too strict with outliers!



Error models: robust kernels

* Just one outlier is enough
to ruin a least-squares
estimator.

1000

800 |

600 |

400 |

200 |

=200

~400 |

-600

— Ridge
—— Robust




Error models: robust kernels

Huber Loss/ Smooth MAE Loss vs. Predicted values (Color: Deltas)

Robust M-estimators: based - \ f — o
on modified cost functions. . n 10
10 -+ \
Well-known kernels: s
e Pseudo-Huber, " 6]
* Cauchy, 4
* Geman-McClure, ‘]
|::|.
* Tukey. . . . . . . . . .
=10.0 -1.5 =5.0 -25 0.0 25 5.0 715 10.0

Predictions
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Relationship between graphs and
sparse matrix Algebra



Motivation

* Linearization = Jacobian of factors.
* Variable ordering = Important.
* Learn about the most common nonlinear algorithms: GN, LM, DL, etc.



Nonlinear factor graphs

MAP of nonlinear factor graphs becomes iteratively solving Ax=b

XY MAP  _ 1

- gty 01X ocexp { =5 I1s(X0) — =13, |

= argmax H di(X;).
X i

XMAP _ argminz 1hi(X:) — 3z||§
X :

“Factor Graphs for Robot Perception” Frank Dellaert, Michael Kaess, 2017
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Nonlinear factor graphs

Linearization:
hi(X;) = hi( XD + A;) = hy(XY) + H; A,

A Oh;i(X;) ]

H;
5XI' | x0

AT = m‘gmiﬂé Z
i

ha(XO) + HiA; — =)
A i

2
b
£

)
F4
w7,
£y

= m‘g;ﬂnZ .‘Hiﬂ.i — {31' — hi(X})

“Factor Graphs for Robot Perception” Frank Dellaert, Michael Kaess, 2017
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Nonlinear factor graphs

Whitening:

A; = 7 *H,
2 A Tw-1 12\ (w12 _172 |12 19
el 2 €8 e = (2712%)  (57%) = =713 b = =2 (= ha(XD))
A* = argmin} A — b2 Direct methods for LS:
A ) = Cholesky (+ forward and back-substitution)
= argmin ||[AA — b||5.
A i = QR

Iteration: Gauss-Newton, Dogleg, Lev-Marq.

“Factor Graphs for Robot Perception” Frank Dellaert, Michael Kaess, 2017

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 49



Sparsity
 Sparsity of Jacobians (and hence, Hessians H=J’)) are key for efficiency.

»
ti\,
il /vﬂm§:§\‘§§%ﬁ ’
AN L)

A Sparse Symmetric Matrix

“ S\ Dl
AR e
s ".’.’.S..‘.

N ————
. \\\\‘;' =

100 |

150 |
2007 S5
25010
300 |

350

400 1

450 T

Figure 2.1: Factor graph for a larger, simulated SLAM example.

MNonzeros = 7551 (3.291%)
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The elimination
algorithm

 Example. Ordering: L1,L2,X1,X2,X3. [ | .

p(ly,la,z,w0,23) = ply|zy, z2)p(la|xs)
plxy|ze)p(xa|zs)p(rs)

I/— Il |= Iz } I3 ‘\_‘/'l -~

.

@‘ ) o . .
} (©) ()

zg 24

=
\&)
2)
b
\m
——
(&Y
),

AN

D
®

)

xlx N ./ /
- (=)
N, >/
(e)
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The importance of ordering

* Dominating cost: factorization of sparse matrices for local factors
while eliminating.



The importance of ordering

\ A

nnz=9399

J') =

chol (A) =
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Example applications of FGs



Linear—quadratic regulator (LQR)

Tr41 = Azxk + Bug n

argmin Z i Qxi + ul Ru,
Ly (zy) = :I;{Q:rk Uk S
Lu(uk) = UgR‘uk s.1. Tyy1 = Az, + Bu; fort =1toT1T —1

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Linear—quadratic regulator (LQR)

Cost function of state
xTQx

? Dynamics Equation ? ?
: Axi + Bui = Xiv1 : :

Cost function of action
u"Ru

Figure 2 Factor graph structure for an LQR problem with 3 time steps. The cost
factors are marked with dashed lines and the dynamics constraint factors are marked
with solid lines.

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Linear—quadratic regulator (LQR)

i T
ngxO xIQxl ngxz %0 Qxp X Qxq

(Axy + Buy)TQ(Ax; + Buy)

Axg + Bug = x; E Ax, + Bu;y = x, Axy + Bug = x4

x, = Ax; + By,

7
ul Ruy ! u; Ruy

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)
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Linear—quadratic regulator (LQR)

x§Qxo x] Qx, xTQx, xTQx, xT(ATQA — ATQBK,)x,

(Ax; + Bu;)TQ(Ax; + Buy)
Axg + Bug = x4

x; = Axy + Buy X3 = Axq + Buy

u = Kixg

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)
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Linear—quadratic regulator (LQR)

x5 Qxo *{ Qxg

Adding the control cost (3) to (6), the combined cost of the two red factors in Figure 4a is

o [ ]
given by: : ; (Ax; + Buy)TQ(Ax + Buy)

Axg + Bug = x;

Pa(x1,u1) = UTRUI + (Azy + Buy)"Q(Azy + Buy) (7)

We minimize ¢g by setting the derivative of (7) wrt u, to zero yielding the expression for the

Xy = Axq + Bu,

- = *
optimal control input u; as

ui(z,) = —(R+ BTQB) 'BTQAz, (8)
= K—l.‘]ﬁ]

where K, := —(R+ BTQB) 'BTQA

Equivalent to the well-known Ricatti equation solution.

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)
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Nonintrusive load monitoring
(NILM)

* |dentifying which appliances are ON/OFF from electric signals, e.g.
“load disaggregation”. W: real power, R: reactive power. L, =ON/OFF.

Goutam, Y. G., Chandra, M. G., Srinivasarengan, K., & ° 6

Kadhe, S. (2013, August). On electrical load disaggregation
using factor graphs. In 2013 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI) (pp. 1759-1764). IEEE.

p(L, W, R)=p(W.R| LYp(L,) p(L,) p(Ly )}



Applications to robotics & vision

* Large systems of
keyframes and
observations.

e SLAM vs
localization.

e SE(3) vs Euclidean

Figure 2.1: Factor graph for a larger, simulated SLAM example.

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Applications to robotics & vision

fprior (XO) ffeat (fl) ffeat (f2> ffeat (f4)

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 70



Applications to robotics & vision

fprior (aXO) ffeat (afl) ffeat (afZ) fprior (bX4)

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 71



Applications to robotics & vision

C++ libraries for factor graphs (tailored to SLAM):

e g20: A General Framework for Graph Optimization [Grisetti et al.]
https://github.com/RainerKuemmerle/g20

* GTSAM: GeorgiaTech Smoothing and Mapping [Dellaert et al.]
https://github.com/borglab/gtsam

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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https://github.com/RainerKuemmerle/g2o
https://github.com/borglab/gtsam

Bundle adjustment, poses-only, structure-only
optimization

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 73
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Applications to robotics & vision

* Poses-only: “factorizing out” some variables comes with the cost of a
denser information matrix (in principle).

* The “mass-spring” model: “Removing a mass and all springs attached to
it is equivalent to adding new springs between all affected masses”.

(Next slides from: Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-scale
mapping of urban structures. The International Journal of Robotics Research, 25(5-6), 403-429.)



(a) Observation Is landmark m

Applications to robotics & vision

u EEE

! |
b — ¢ — e e ———4
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Applications to robotics & vision

(b) Robot motion from x; to x3

m

>(—/>

w
i
Xy

Xy

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Applications to robotics & vision

(c) Several steps later
X, X, X, X, m, m,m,m

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 79



Applications to robotics & vision

(a) The removal of m| changes the link between x| and x;
X X, Xy X, M m,m,m

N | . K =
o i e -

—p
X, X, 2 X% om,

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Applications to robotics & vision

(b) The removal of m3 introduces a new link between x> and x4
X Xy Xy Xg m, m

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Applications to robotics & vision

(c) Final result after removing all map features

B—B—p—k

X, X, X, Xa j

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 82




Time-varying gas mapping with a mobile
robot

* Model the environment as a discrete set of cells with gas
concentrations as the “unknown”. Include obstacles information.

/

m; 4

Vi

Mormaleed concentration

Monroy, J. G., Blanco, J. L., & Gonzalez-Jimenez, J.
(2016). Time-variant gas distribution mapping with
X, x obstacle information. Autonomous Robots, 40(1), 1-16.
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Time-varying gas mapping with a mobile
robot

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco



Time-varying gas mapping with a mobile
robot

Cells
Cells

Cells
Cells

1 15
Cells

(d) 62 =0.5

10 15 20
Cells

(c) 0;‘3 = 1.25

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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Gas mapping in dynamic
environments

* Exploring a gas diffusion process using a
multi-robot system. The physical behavior
of the diffusion process is modeled using a
Partial Differential Equation (PDE).

MiCS-5524
gas sensor

Microcontroller
with ADC

Wiedemann, T., Shutin, D., & Lilienthal, A. J. (2019).
Model-based gas source localization strategy for a
cooperative multi-robot system—A probabilistic
approach and experimental validation incorporating
physical knowledge and model

uncertainties. Robotics and Autonomous Systems.

IR LED:s for
tracking

Rover with
Raspberry Pi

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco




Manipulator dynamics with factor graphs

* Mechanical systems: kinematics can be also formulated as FGs.

* “This paper describes a unified method solving for inverse, forward,
and hybrid dynamics problems for robotic manipulators with either
open kinematic chains or closed kinematic loops based on factor
graphs”.

Xie, M., & Dellaert, F. (2019). A Unified Method for Solving
Inverse, Forward, and Hybrid Manipulator Dynamics using
Factor Graphs. arXiv preprint arXiv:1911.10065.



A general framew
modeling and dyr

ork for
amMmiIC

simulation of multibody

systems using fac

tor grapns

Nonlinear Dynamics - Springer Nature (2021)
Jose-Luis Blanco-Claraco-Antonio

Leanza-Giulio Reina




Introduction to GTSAM



GTSAM

e C++ library.

«» Cods ssues 24 Pull requests 7 Actions Projects 0 Wik g nsights
. [ l ( []
ra I I e a e r e O r I a e C n S I l I e O r GTSAM is 3 library of C++ classes that implement smoecthing and mapping (SAM) in rebotics and vision, using factor graphs and Bayes
’ networks as the underlying computing paradigm rather than sparse matrices, http://gtsam.org
P 11,308 commits 1# 61 branches 10 packag 1 environmen 7T contrib:

Robotics and Intelligent Machines”.

¥ F @ T
=] 3

* Tailored to SLAM but coded as a general
purpose library.

* Matlab and Python bindings.

cythar

F F FF¥rreEeFw
5 @ B oo oo

gtzam_unstable

W
3

|
o

https://github.com/borglab/gtsam/

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco
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https://github.com/borglab/gtsam/

GTSAM

* Main C++ classes:

* NonlinearFactorGraph : The Factor graph.

* FactorXXX: Factors.
Arguments:
* N Keys. Can be built with “Symbol” (e.g. “X1”, “V2”).
* Observed value.
* Noise model, e.g. “noiseModel::Diagonal::Sigmas()”
 Values : “Variant” container for initial and final values of all keys.
Associative container: Key - Value.

* noiseModel: Noise models, Gaussians, isotropic, M-estimation
kernels,...




GTSAM: PlanarSLAMExample.cpp

/f As this iz a planar SLAM example, we will use Pose? variables (x, v, theta) to represent
ff the robot positions and Point2 variables (x, ¥) to represent the landmark coordinates.
#include <gtsam/geometry/Pose2.h>

#include <gtsam/geometry/PointZ.h>

// Each variable in the system {(poses and landmarks) must be identified with a unigue key.
/f We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
Ff Here we will use Symbols

#include <gtsam/inference/Symbol.h>

Ff In GTSAM, measurement functions are represented as 'factors'. Several common factors

// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
/f Here we will use a RangeBearing factor for the range-bearing measurements to identified
Ff landmarks, and Between factors for the relative motion described by ocdometry measurements.
// Also, we will initialize the robot at the origin using a Prior factor.

#include <gtsam/slam/PricrFactor.h:

#include <gtsam/slam/BetweenFactor.hs

#include <gtsam/sam/BearingRangefactor.h>
Ff When the factors are created, we will add them to & Factor Graph. As the factors we are using

// are nonlinear factors, we will need a Monlinear Factor Graph.

#include <gtsam/nonlinear/MonlinearFactorGraph.h:

Introduction to Factor Graphs and GTSAM - Jose Luis Blanco 95



GTSAM: PlanarSLAMExample.cpp

ff Finmally, once all of the factors have been added to our factor graph, we will want to
Ff solvefoptimize to graph to find the best (Maximum & Posteriori) set of variable values.
Ff GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
[/ common Levenberg-Marquardt solver

#include <gtsam/nonlinear/LevenbergMarguardtOptimizer.n>

ff Once the optimized wvalues have been calculated, we can also calculate the marginal covariance
ff of desired wvariables

#include <gtsam/monlinear/Marginals.hz

ff The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the

Jff nonlinear functions around an initial linearization point, then solve the linear system
ff to update the linearization point. This happens repeatedly until the solver converges
ff to a consistent set of variable wvalues. This requires us to specify am initial guess

ff for each wvariable, held in & Values container.

#include <gtsam/monlinear/Values.h>
using namespace std;

using namespace gisam;

int main(int argc, char®* argv) {

S/ Create a factor graph

MonlinearFactorGraph graph;
ff Create the keys we need for this simple example

static Symbol =x1("x",1), =2{'x',2), x3("x',3);
static Symbol 11("1°,1), 12({'1',2);
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GTSAM: PlanarSLAMExample.cpp

// Add a prior on pose x1 at the origim. A prior factor consists of @ mean and a noise model (covariance
Pose? prior(@.@&, 8.8, @.8); // prior mean iz at origin
noiseModel: :Diagonal: :shared_ptr priorMoise = noiseModel::Diagonal::Sigmas{Vector3(a.3, 8.3, @.1)); 7/ 3

graph.emplace_shared<PriorFactor<Pose2» »>(xl1, prior, priorNoise}; // add directly to graph

Sf Add two ocdometry factors

Pose? odometry(2.8, 8.8, @.8); // create & measurement for both factors (the same in this case)
noiseModel: :Diagonal: :shared_ptr odometryMoise = noiseModel::Disgonal::Sigmas(Vector3(@.2, @.2, @.1)); /
graph.emplace_shared<BetweenFactor<Pose2> »>(xl, %2, odometry, odometryhloise);

graph.emplace_shared<BetweenFactor<Pose2> »>(x2, x3, ocdometry, odometryhoise);

// Add Range-Bearing measurements to two different landmarks
J// create a noise model for the landmark measurements
noiseModel: :Diagonal: :shared_ptr measurementMoise = noiseModel::Disgonal::Sigmas(Vector2(@.1, @.2)); /7
/f create the measurement values - indices are (pose id, landmark id)
Rot2 bearingll = Rot2::fromDegrees(45),
bearing2l = Rot2::fromDegrees{9a),
bearing3? = Rot2::fromDegrees(9@);
double rangell = std::sqri(4.8+4.8),
range2l = 2.0,
range3z = 2.0;

/{ Add Bearing-Range factors
graph.emplace_shared<BearingRangeFactor<Pose?, Point2> »>(x1, 11, bearingll, rangell, measurementMoise);
graph.emplace_shared<BearingRangeFactor<Pose?, Point2> »>(x2, 11, bearing2l, range2l, measurementMoise);

graph.emplace_shared<BearingRangeFactor<Pose?, Point2» »>(x3, 12, bearing32, range3?, measurementMoise);

Sf Print

graph.print({"Factor Graph:in"};
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GTSAM: PlanarSLAMExample.cpp

Sf Create (deliberately inaccurate) initial estimate
Values initialEstimate;

initialEstimate.insert{x1, PoseZ(8.5, @.@, 8.2));
initialEstimate.insert{x2, Pose2(2.3, @.1,-8.2));
initialEstimate.insert{x3, Pose2(4.1, 8.1, 8.1});
initialEstimate.insert{ll, Point2{1.8, 2.1));
initialEstimate.insert{l2, Point2{4.1, 1.8));

S Print

initialEstimate.print("Initial Estimate:.n");

Sf Optimize using Levenberg-Marquardt optimization. The optimizer

J/F accepts an optional set of configuration parameters, controlling

J/f things like convergence criteria, the type of linear system solver
JF to use, and the amount of information displayed during coptimization.
/f Here we will use the default set of parameters. See the

/f documentation for the full set of parameters.
LevenbergMarquardtOptimizer optimizer{graph, initialEstimate);

Values result = optimizer.optimized);

result.print{"Final Result:.n");

/f Calculate and print marginal covariances for all variables
Marginals marginals({graph, result);
print{marginals.marginalCovariance{x1), "x1 covariance");
print({marginals.marginalCovariance{x2), "x2 covariance");
print({marginals.marginalCovariance{x3), "x3 covariance");
print{marginals.marginalCovariance{11l), "11 covariance");

print{marginals.marginalCovariance{l12), "12 covariance");
return @;
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GTSAM: Matlab wrapper



GTSAM MATLARB: Installation

* From sources:
* Enable building the MATLAB wrapper in CMake.
e Set an installation directory.
* Build the INSTALL target.

* Precompiled version for Windows and MATLAB 64bits:

 https://github.com/jlblancoc/factor-graphs-course
* Clone or download as ZIP and uncompress.
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GTSAM MATLARB: Installation

* From MATLAB:

e “Add to path” -
gtsam_toolbox

e (If built from sources
manually, also add the
“bin” directory to the
sytem PATH).

JL New Variable Analyze Code »- Oy Preferences
Sc L [Qrndries ¥ U@ =~ o U
L7 Open Variable v t\f Run and Time < =y Set Path
New Open | |Compare Import Save Simulink  Layout
t - - Data Workspace () Clear Workspace v | Clear Commands + 2 lmPsralelv
FILE VARIABLE CODE SIMULINK ENVIRONMENT
B2 » D: » code » 2020-ual-factor-graphs-course » gtsam_toolbox »
int Folder [Of] Command Window
Name Git
+gtsam Academic License
s
fx >
s les
gtsam. (&}
gtsam_unstable.dll @
gtsam_unstable_wrapper.mexw64 @
gtsam_wrapper.mexwb4 @
metis.dll &)
9 wrap.exe [¢]
Open Current Folder in Explorer
New Folder
New File >
Source Control >
Add to Path urrent Folder
Remove from Path >

¥~ Indicate Files Not on Path

Find Files
Back

Up One Level
Reports

Refresh

Collapse All

Ctrl+Mayds+F

Retroceso

F5
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GITSAM MATLAB: Exercise 1

* Run Pose2SLAMExample.m

057

* Analyze the code and the results. *°| C\

5 1
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GITSAM MATLAB: Exercise 2

* Modify the file Pose2SLAMExample.m to:

 Remove the observation between Keyframe 5 & 2. Observe the final
covariances.
* Restore the removed edge, and introduce small errors in the relative poses.

* After that, define a different covariance and create a new edge between 1 &
5. Experiment with different information matrices and edge observed values.



